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Abstract 
(Snl_xTbx)Tb4Rh6Sn18 and (Snl_xDyx)Dy4OsrSnls 
belong to a large stannide series where there exist 
two chemical formulae: SnM3M~Sn~2 (phase I and 
I') and SnM4M~Sn~8 (phase II and II'), and four 
structures: I, I', II and II'. That of phase II' appeared 
to be cubic (a = 13.7/~ and space group Fm3m) while 
the structure of phase II is tetragonal (a = 13-7, c ~- 
27 .4A and space group I4~/acd). Phase II' of the 
M = Tb, M ' =  Rh stannide was found to be a dis- 
ordered microtwinned phase II. The disorder con- 
cerned the Tb(2) and Sn(2) sublattices of formula: 
[Sn(1) ~_xTbx]Tb(2)4Rh6Sn(2)4Sn(3)12Sn(4)2. This 
qualitative model is based on the observation of weak 
intermittent diffuse streaks and on refinements of the 
average cubic structure, carried out by taking into 
account only Bragg reflections. The results proved 
that phases II and II' had related structures and the 
same chemical formulae. The complete reciprocal 
lattice (Bragg+diffuse scattering) was obtained by 
electron diffraction for the M = Dy, M ' = O s  stan- 
nide. The diffuse streaks are lines parallel to the {100} 
cubic (a~i,x an,× an,) directions and going through 
the F-centering-forbidden nodes. The three sets of 
lines are related by the cubic threefold [ l l l ]~ r  axis. 
It is observed that phase II structure contains eight- 
atom [4Sn(2), 4M(2)]  blocks which can have two 
orientations (here called A and B). It can be surmised 
that the same blocks exist in phase II', but in a 
partially disordered arrangement. Two equivalent 
descriptions of this arrangement are given: (1) 
ordered (100) planes of A and B blocks are stacked 
at random and the threefold-axis-twinned individuals 
give rise to three sets of streaks; (2) the A and B 
blocks form an f.c.c, lattice which is comprised of 
tetrahedra formed of nearest neighbours; it is shown 
that when each cluster contains two A and two B 
blocks, diffuse scattering condenses into the observed 
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streaks. Crystal data for (Snl_xTb,,)Tb4Rh6Snl8, x = 
1: M, = 3548.5, disordered microtwinned tetra~onal, 
14~/acd, a = 13.772 (2)A, c=2a,  V= 5224.2 A ,  Z =  
8, D,, = 9.02 gcm -3, Ag Ka, graphite mono- 
chromator, /z = 175-9 cm -t,  F(000) = 11 960, T =  
ambient. 

Introduction 

The (Snl_xTb,,)Tb4Rh6Snls and (Snl_xDyx)Dy4Os6- 
Snl8 compounds belong to a large series of inter- 
metallic stannides with formulae SnM3M~Sn~2 or 
(SnI_.,Mx)M4M'6Sn~8, with M = RE (rare earth), Y, 
Sc, Ca, Sr, Th and M ' =  Rh, Ru, Ir, Os, Co. These 
stannides exhibit magnetic and/or  superconducting 
properties; for example, reentrant superconductivity 
( Tc = 1, T,, = 0.5 K) was found in the compound with 
M =  Er and M ' - - R h  (Remeika et al., 1980). Four 
different phases have been reported in this system, 
namely I, I', II and II', whose structures may be 
described by means of three-dimensional networks 
of corner-sharing M'Sn6 trigonal prisms. The way the 
prisms are joined together leads either to phase I 
and I' compounds with the chemical formula 
SnM3M'4Snl2 or to phase II and II' compounds with 
the chemical formula (Sn~_xMx)M4M'6Snl8. In some 
previous publications phase II' was called phase III. 
Phase I is cubic (space group Pm3n, a~ =9 .7  ]k). In 
this structure the corner-sharing trigonal-prism 
network generates icosahedral and cuboctahedral 
sites occupied by the Sn(1) and M atoms. These latter 
atoms form a sublattice having the arrangement of 
an A15 structure (Vandenberg, 1980; Hodeau, 
Chenavas, Marezio & Remeika, 1980). Phase I' com- 
pounds have a slightly distorted phase I structure; its 
symmetry is either cubic with a~, = 2a~ or tetragonal 
with ai,=a~2 ~/2 and ci,=a~ (Hodeau, Marezio, 
Remeika & Chen, 1982; Miraglia, Hodeau, 
Marezio, Laviron, Ghedira & Espinosa, 1986). Phase 
II is tetragonal (space group 14~/acd, a~x-~13"7, 
cn"-2a~) .  Its chemical formula corresponds 
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to [Sn(1)l_xM(1)x]M(2)4M'6Sn(2)4Sn(3)12Sn(4)2 
(Hodeau, Marezio & Remeika, 1984). The crystal 
structure is rather complex, but it can be described 
as the result of interpenetrated sublattices. The Sn(2) 
and Sn(3) atoms form a three-dimensional network 
of corner-sharing trigonal prisms whose centers are 
occupied by the M '  atoms. The Sn(4) atoms are only 
bonded to M(2) atoms and do not participate in the 
formation of the trigonal-prism network. The 
[Sn(1 ) 1-xM(1)x] M(2)4 sublattice is comprised of two 
interpenetrating f.c.e, lattices: one formed by disor- 
dered Sn(1) and M(1) atoms and the other by M(2)4 
tetrahedra. 

Phase II '  appears to be cubic (air = an); however, 
preliminary studies on the M =Tb,  M ' =  Rh com- 
pound revealed on the precession photographs the 
presence of intermittent diffuse streaks exactly where 
the spots responsible for doubling the c axis appeared 
on the precession photographs of phase II. This 
prompted the authors to surmise that the tetragonality 
of phase II existed also in phase II' but only in a 
short-range fashion (Chenavas, Hodeau, Collomb, 
Marezio, Remeika & Vandenberg, 1981). Since the 
observed diffuse streaks could not be taken into 
account in the structural refinements, no model could 
be proposed for the phase II' compounds, and average 
structures were obtained (Vandenberg, 1980; 
Chenavas et al., 1981). Electron diffraction can be 
a suitable tool to determine the reciprocal lattice 
including the diffuse scattering. A study of the M = 
Dy, M ' =  Os compound was undertaken by TEM 
(transmission electron microscopy) and new struc- 
tural refinements based on X-ray data were carded 
out for the M = Tb, M '  = Rh stannide. This allowed 
us to reconstruct the reciprocal lattice completely and 
to propose a model of disorder which takes into 
account the Bragg reflections as well as the diffuse 
scattering. 

X-ray m e a s u r e m e n t s  

All the single crystals were grown by dissolving the 
starting elements in evacuated fused silica tubes at 
--1320 K, followed by a cooling rate of 5 K h -1 to 
820 K. More details about the crystal-growth process 
are reported elsewhere (Espinosa, Cooper & Barz, 
1982). 

The cubic lattice parameters as obtained from X- 
ray powder diffraction (Guinier camera, Fe Ka  radia- 
tion, Si as an internal standard) were a i r  = 13.772 (2) 
and air = 13.775 (6) A for the M = Tb, M '  = Rh and 
M = Dy, M ' =  Os compounds, respectively; they are 
in good agreement with those reported by Espinosa, 
Cooper & Barz (1982). 

The X-ray investigations were focused on the M = 
Tb, M ' =  Rh compound. Long-exposure precession 
photographs (over 200 h) were taken with a pre- 
cession camera equipped with Mo Ka  radiation. The 

intensity measurements were carded out with a small 
crystal ground into a sphere (r = 0.012 cm,/~r = 1.95), 
mounted on a four-circle Philips diffractometer 
(graphite monochromator, Ag Ka  radiation). The 
integrated intensities were measured by the to-scan 
technique with a variable scan width given by 80 = 
1.50+0.20 tan O, and a variable speed according to 
the intensity. In the 0 = 3-30 ° range, 15 504 reflections 
were measured. The integrated intensities were first 
averaged in the m3 m point group and then converted 
into structure factors by applying the Lorentz, polari- 
zation and absorption corrections. This led to 448 
independent reflections. In order to decrease the 
extinction effects, reflections with sin 0/A < 0.40 A -1 
were excluded from the refinements. It was also 
decided to exclude the weak reflections correspond- 
ing to F 2 <  10or(F2). Since we are dealing with dis- 
ordered crystals and the aim is to obtain the average 
structure, it is not unreasonable to use such drastic 
conditions. The subsequent refinements (on F)  were 
based on 303 independent reflections and the weight- 
ing scheme w= 1/or(F 2) was used throughout the 
refinements. 

As stated above, the precession photographs 
confirmed that the phase II '  lattice is closely related 
to that of phase II. The indexing led to an f.c.c, space 
group; however, there were intermittent diffuse-scat- 
tering streaks parallel to the {100} directions of the 
cubic cell ( a i r  × a i r  × a i r ) .  It may be seen from Fig. 
1 that they form intermittent squares centered around 
the cubic lattice nodes. By comparing the correspond- 
ing lattice planes of phase II and II', schematically 

i i, i~if '~' 
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Fig. 1. X-ray precession pattern of the (hk3) plane for 
(Snl_~Tbx)Tb4Rh6Snl s. 
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drawn in Fig. 2, one sees that the streaks forming the 
squares correspond to the superstructure spots which 
are responsible for the doubling of the c axis of 
phase II. 

In a previous paper (Hodeau, Marezio & Remeika, 
1984) the presence of such diffuse streaks was inter- 
preted qualitatively as due to a disorder between the 
M(2) and Sn(2) atoms. It was also surmised that the 
structure was built up of phase II microdomains 
differentiated by the interchange of the M(2) sublat- 
tice with that of Sn(2), while the rest of the structure 
remained unchanged. The refinement of the average 
structure corroborated this latter assumption. We 
report herein the main features of the refinement 
results. More details are given elsewhere (Hodeau, 
1984). 

The determination of the M = Tb, M ' =  Rh com- 
pound structure was first attempted in the Fm3m 
space group. The cubic symmetry was simulated by 
the superposition of three tetragonal phase II cells 
related by the threefold axis [11½]ii and a (0~) transla- 
tion of the origin. In this simulation it is assumed 
that the domains are small enough so that the total 
calculated structure factor is the sum of the structure 
factors of each individual. It should be noted that in 
a given cell only half of the Sn(2) and M(2) Fm3m 32f 
positions are occupied. Moreover, if the (x 'x 'x ')  posi- 
tion is occupied by one of the two atoms, the corre- 
sponding (x"x"x") position must be empty. In this 
case the Fm3 m atomic positions are used to calculate 
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Fig. 2. X-ray precession pattern and schematic representations of 

the (l/d)plane for (Sn~_,,Tbx)Tb4Rh~Sn~s: (a) X-ray pattern; 
(b) schematic phase II' representation; (c) schematic representa- 
tion of untwinned phase II. 

the structure factors. Each atom was given an 
isotropic thermal parameter. That of Sn(4) was very 
large because the position of this atom is poorly 
described in the Fm3 m space group. Although strong 
correlations existed among the refined parameters 
convergence was attained. The final R and wR factors 
were 0.082 and 0.076, respectively. The final posi- 
tional and thermal parameters are reported in Table 
1. These results clearly showed the close relationship 
between the structures of phases II and II'. Another 
attempt to refine the structure of phase II' was made 
by assuming the I41/acd space group. In this case 
the cubic reflections were considered to contain the 
contributions of three equal twins, i.e. it was assumed 
that the individual's size was large enough so that the 
total intensity was the sum of the intensities of each 
individual. The intensities could be thus added inco- 
herently. By using the 303 independent reflections, 
the refinement yielded R =0.074 and wR =0-077. 
These results show that the atomic positions of a 
twinned phase II give a correct description of the 
phase II' structure. The thermal parameters were 
given the corresponding values of the M = Er, M ' =  
Rh compound (Hodeau, Marezio & Remeika, 1984) 
and kept fixed. The occupation factor of the Sn(4) 
site was also varied. Its value [0.80 (6)] proved that 
this site is occupied. The final positional parameters 
are reported in Table 2. 

It can be concluded from these refinements that 
phase II and phase II' compounds have the same 
chemical formula, namely (Snl-xM,,)M4M'6Snls; they 
also show to what extent the respective structures are 
related to each other. As far as the disorder of the 
[M(2)4Sn(2)4] sublattice was concerned, no model 
could be proposed by considering the refinement 
results only. Diffuse scattering studies were thus 
undertaken by electron diffraction. 

Electron diffraction studies 

Electron diffraction studies were carried out on the 
M = Dy, M ' =  Os compound by using a Philips EM 
400T microscope operating at 120 kV. A double-tilting 
goniometer stage was used to reach different planes 
in reciprocal space with the same sample. Single 
crystals were first crushed and then transferred to 
holey carbon-coated copper grids. 

The electron diffraction patterns revealed the same 
type of diffuse streaks as previously observed for the 
M = Tb, M'  = Rh compound. However, the streaks 
observed in the electron diffraction photographs were 
continuous. A series of tilting experiments around 
different crystallographic axes were carried out. 
Examples are given in Figs. 3(a), 4(a), 5(a) and 6(a). 
The diffuse reciprocal lattice was reconstructed by 
inserting a schematic representation of each pattern 
in the cubic reciprocal lattice (air x air x a.,), see 
Figs. 3(b), 4(b), 5(b), and 6(b). It may be seen in 
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Table 1. Positional and thermal parameters for 
( S n l _ x T b x ) T b 4 R h 6 S n t 8  with the Fm3m space group 

M(I)* 
Tb(2) 
Sn(2)  
Sn(3) 
Sn(4) 
Rh 

and the a i r  × a i r  × a l i ,  unit cell 

Table 2. Positional parameters for 
( S n l _ x T h x ) T b 4 R h 6 S n l s  with the I41/acd space group 

and the an, x aw x 2aw unit cell 

Fig. 7(a) that the diffuse streaks are lines parallel to 
the {100} cubic directions; thus they are directed 
along the a*, axes, going through the F-centering- 
forbidden nodes. These diffuse lines are related by 
the cubic threefold axis [1111Ii, (Figs. 7b, c,d). 

x y z B x y z 

4(b) 1/2 1/2 1/2 0.92 (6) M(1)* 8(b) 0.0 0.0 1/4 
32(f)(×0-5) 0.1371 (3) 0.1371 0.1371 0.63 (3) Tb(2) 32(g) 0"1380 (4) 0.1364 (4) -0.0685 (1) 
32(f)(x0-5) 0-0876 (5) 0.0876 0.0876 0-78 (4) 
96(k)(×0.5) 0.1745 (2) 0-1745 0.5131 (2) 0.74 (2) Sn(2) 32(g) 0.0850 (7) 0.0898 (4) 0.0438 (1) 

8(c) 1/4 1/4 1/4 >30 Sn(3)1 16(f) 0-179 (2) 0-179 1/4 
24(e) 0.2447 (2) 0 0 0.47 (2) Sn(3)2 16(f) 0.331 (2) 0.331 1/4 

Sn(3)3 32(g) 0.3231 (5) 0-0115 (8) 0.0870 (1) 
* M(1) --Sn(1)t_xTb(1)~; x = 0.6 (1). Sn(3)4 32(g) -0-005 (2) 0-3271 (5) 0.0875 (1) 

Sn(4)t 16(e) 1/4 0-205 1/8 
Rh t 16(d) 0.0 0-0 0.01225 (1) 
Rh 2 32(g) 0.245 0.002 0.000 

Discussion 

As pointed out by Hodeau, Marezio & Remeika 
(1984), the sublattice responsible for the disorder is 
that of the M(2)4Sn(2)4 atoms. The M(2) atoms form 
distorted tetrahedra arranged as an f.c.c, lattice and 
each tetrahedral face is capped with an Sn(2) atom. 

* M(1) = Sn(1)t_xTb(1)x; x =  1.0 (1). 
t Occupation factor = 0.80 (6). 

As these atoms are also arranged as distorted 
tetrahedra, the M(2)4Sn(2)4 sublattice consists of an 
f.c.c, lattice of 'interpenetrated tetrahedra' (Fig. 8). 
These interpenetrated tetrahedra can have two 
orientations related by a 90 ° rotation around a four- 
fold axis (Fig. 8). One goes from one orientation to 
the other by substituting M(2) atoms with Sn(2) 
atoms. Hereafter, an interpenetrated [M(2)4Sn(2)4] 
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Fig. 3. (a) Electron diffraction pattern perpend~ular to the [012] 
zone axis for (Snt_xDyx)Dy4OseSnls. (b) Schematic rep- 
resentation. 

(a) 

(b) 
Fig. 4. ( a )  Elec t ron  diffraction pat tern  perpendicu la r  to th© [013] 

zone axis for  (Snl -xDy~)Dy4Os6Snls .  (b) Schemat ic  rep- 
resentation.  
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tetrahedron will be called a 'block' and their two 
orientations are called A- and B-type blocks, respec- 
tively. The long-range order existing in phase II may 
be described as an ordered stacking along the [001] 
direction of equivalent planes, each consisting of a 
B-centered square lattice of A blocks. Each plane is 
related to the next by a 4~ axis located at the (1~0) 
position. Such a lattice is shown in Fig. 9. It is worth 
noting that such an arrangement is analogous to that 
of Fe and Li atoms in the tetragonal ordered Q1 phase 
of LiFeO2 (Barblan, Brandenberger & Niggli, 1944). 

It can be demonstrated that uncorrelated planes 
along the [001] direction, as far as the relative A and 
B positions are concerned, give rise to diffuse streaks 
as shown in Fig. 7(b). If the structure is twinned by 
a threefold [ 111 ] w pseudo-axis, the stacking disorder 
in the A,B lattice occurs along the three {100} pseudo- 
cubic directions and the (b), (c), (d) lattices of Fig. 
7 are obtained for each individual, respectively. By 
electron diffraction the lattice corresponding to Fig. 
7(a) was observed for phase II'. This means that the 
domains are smaller than the selected area and there- 
fore the disorder of phase II' may be regarded as a 

microtwinned stacking disorder of (A,B) square 
planes. This disorder is schematized in Fig. 10. 

A different approach has been developed to explain 
the diffuse intensity distribution in the reciprocal 
lattice of a disordered crystal. Introduced by Brunel, 
de Bergevin & Gondrand (1972), extended by 
Sauvage & Parth6 (1974), and improved by de Ridder, 
Van Tendeloo, Van Dyck & Amelinckx (1976) and 
de Ridder, Van Dyck, Van Tendeloo & Amelinckx 
(1977), this method, based on the concept of perfect 
local order, requires that the structure contains atom 
clusters (tetrahedra, octahedra, cubes etc.) which have 
the same composition as the crystal and that the atoms 
contributing to the disorder form a Bravais lattice. 

( a )  
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' - -  ~ , :  ; ~  ~ • 

3 3 1  "O , '" :," . . . .  i . . . . . . .  

(b) 
Fig. 5. (a) Electron diffraction pattern perpendicular to the [213] 

zone axis for (Snt_xDyx)Dy4Os6Snls. (b) Schematic rep- 
resentation. 

(a) 

ooo 020 040 

2OO 220 240 
v • • 

L2,.=: ~ , _ _ .  

(b) 
Fig. 6. (a) Electron diffraction pattern perpendicular to the [001] 

zone axis for (Snl_xDyx)Dy4Os6Snts. (b) Schematic rep- 
resentation. 

I • ' A 

(a) (b) (c) (d) 
Fig. 7. (a) Schematic representation of the reciprocal lattice for 

phase II'. (b), (c), (d) Decomposition of the (a) lattice by a 
threefold [ 111 ]w pseudo-axis. 
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Depending on the type of polyhedron, different 
diffuse intensity distributions have been obtained. 

For a partially disordered structure, having a local 
order in some regions of the crystal, the scattering- 
power density is given by the sum of a periodical 
contribution P(r)  and of a disordered contribution 
D(r).  The average value of the latter contribution 
over the whole crystal is zero. In the perfect-local- 
order model for a given cluster we have: ~r, D(ri + 
rj) = 0, Vrj. Each i atom forming the clusters is defined 
by a vector ri whose origin is related to the cluster, 
and each cluster is defined by a vector rj. It follows 
that the average of the D(r)  function be zero for a 
cluster as well as for the entire crystal. 

If the distribution of the atom sites in the cluster 
is described by an to(r) function (set of Dirac peaks), 
we have: ~ to ( r )D(r+  rj) dr = 0, Vrj. The Fourier trans- 
form of this convolution product is given by 
O ( g ) F o ( g ) = 0 ,  Vg, where O(g)=FT[ to ( r ) ]  and 
Fo(g) = FT[D(r)] .  The diffuse amplitude Fo(g) of 
the disordered contribution is zero when O ( g ) #  0 
and it may have a value different from zero on the 
surface defined by O(g) = 0. Thus, the diffuse ampli- 
tude is not distributed randomly. One can determine 
the diffusion surface from the to(r) function, that is 
from the cluster shape. If the cluster is centrosym- 
metrical (octahedron, cube etc.) the Fourier transform 

A 

Fig. 8. The M(2)4Sn(2)4 sublattice in the ordered phase II. The 
stars, represented only for two tetrahedra, and the open circles 
refer to Sn(2) and M(2) atoms, respectively. Note the two 
possible orientations for the M(2)4 tetrahedra. 

O(g) is real and the diffuse scattering is localized on 
a surface. If the cluster is not centrosymmetrical 
(tetrahedron, pyramid etc.), the Fourier transform is 
complex [O(g)=R(g)+iI(g)=O] and the diffuse 
scattering is localized on a curve at the intersection 
of R (g) = 0 and I (g) = 0. 

As stated above and shown in Fig. 8 the inter- 
penetrated [M(2)4Sn(2)4] tetrahedra form a cubic 
lattice of A and B blocks; each block represents one 
of the two possible orientations of the interpenetrated 
tetrahedra. The nodes of such a lattice form an f.c.c. 
Bravais lattice which contains tetrahedra formed by 
two A and two B blocks, as shown in Fig. 9. Let us 
suppose that each 2 A - 2 B  tetrahedron is a cluster 
which has the same composition as the crystal, and 
whose i sites are represented by the vectors: r~ = 
-~[111], r 2 = ~ [ l l l ] ,  r 3 = ~ [ l l l ] ,  and r 4 = ~ [ l l T ] .  T h e  
vector origin is at the tetrahedron center and the unit 

41 

A[ 

i A 
B ; A B 

Fig. 9. The lattice of the A,B blocks in the ordered phase II. A 
2 A - 2 B  tetrahedral cluster having the composition of the bulk 
crystal is outlined. 

a 

.II~Z 6.9 A 

Fig. 10. Schematic representation of the stacking of uncorrelated 
planes along the a, b and c axes for various domains of phase 
II' compounds. 
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cell is that of  the crystal, a n , - 1 3 . 8 / ~ .  The Fourier 
transform gives: 

Fl(g) = 0 = E to(r) exp (2~rig. r) 
r 

= e x p  [ icr / 2( h + k + / )  + exp [ i,rr / 2 ( - h  - k + / ) ]  

+ exp [ iTr/2(h - k - l) ] 

+ exp [ i r r / 2 ( - h  + k -  l)] 

= cos hr t /2  cos kTr/2 cos lzr/2 

+ i sin hTr/2 sin kzr /2  sin l'n'/2 = O. 

Its solutions h = 2 m + l ,  k = 2 n ;  h = 2 m ,  k=2n- t -1 ;  
h = 2 m + l ,  / = 2 p ;  h = 2 m ,  / = 2 p + l ;  k = 2 n ,  /'= 
2p+  1; and k = 2 n +  1, l =  2p indicate that the diffuse 
scattering is located on streaks as shown in Fig. 7(a),  
which represents the reciprocal lattice of M = Dy, 
M '  = Os stannide. It is easy to surmise that the disor- 
der in this compound consists in the substitution of 
A with B blocks. Perfect local order exists if the 
substitution occurs in such a way that each tetrahedral 
cluster is comprised of four blocks, two of each type. 

This model is compatible with that based on uncor- 
related planes of blocks described above. In order to 
define a 2 A - 2 B  tetrahedron one has always to take 
into consideration two planes. Whichever stacking of 

~ /  a. # / , ,  

c t A A/ B A BB 

/ B / B A B 
s : A s I s A ~ ' , - - - K - - - ~ s  s A ~ _ . . . ~  

Fig. 11. Possible arrangement of the twin domains in phase II'. 
At the domain walls two tetrahedral clusters which do not have 
the bulk composition are outlined. 

planes exists in the A , B  lattice, any two first-neighbor 
A, B blocks in a given plane can always be associated 
with two first-neighbor A,B blocks of the plane above 
or below, to form a 2 A - 2 B  tetrahedron. The reversed 
reasoning also holds. It follows, in fact, from the 
above discussion that if an f.c.c, lattice is built up of 
2 A - 2 B  tetrahedra, it contains a stacking of ordered 
(A ,B )  planes. A direct geometrical proof was given 
by Danielian (1964). As shown in Fig. 11, at the 
domain walls the cluster composition is not that of 
the crystal. It has been shown theoretically (de 
Ridder, Van Tendeloo, Van Dyck & Amelinckx, 1976; 
de Ridder, Van Dyck, Van Tendeloo & Amelinckx, 
1977) that in such a case a broadening of the diffuse 
pattern would be obtained. We indeed observed that 
the diffuse streaks of the M = Dy, M ' =  Os stannide 
were qualitatively broadened. It should be pointed 
out that no diffuse streak was observed in the zero 
layer of the [001] reciprocal plane (Fig. 6a). Since A 
and B blocks may not be differentiated by projections 
along the [001], [100], and [010] directions, no diffuse 
scattering is to be expected in the zero layer of the 
reciprocal planes [001], [100], and [010]. 

In the case of the M -  Tb, M ' =  Rh stannide we 
observed intermittent rather than continuous streaks. 
This is due to the different level of disorder existing 
in the two compounds. From the dimensions of the 
intermittent streaks it is estimated that the domains 
in the M = Tb, M ' =  Rh stannide have a correlation 
length of "--50 A in one direction and ---200 ,~ in the 
other two. The first value which is of the same order 
of magnitude as the cell parameters corroborates 
qualitatively the model based on perfect local order. 

Fig. 12 shows how one goes from the reciprocal 
lattice of ordered and untwinned phase II to that of 
disordered microtwinned phase II'. It is worth men- 
tioning that experimentally we have observed 
reciprocal lattices such as Figs. 12(b), (c) and (d),  
but never that corresponding to an untwinned 
phase II. 

i °o l  I 

(a) 

v 
(c) 

(b) 

O :. 

(d) 
Fig. 12. Reciprocal lattice for: (a) ordered untwinned phase II; 

(b) ordered twinned phase II; (c) slightly disordered phase II'; 
(d) disordered microtwinned phase II' with perfect local order. 
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Abstract 

Electron-density distribution of a nitrite ion was 
calculated by the ab initio molecular-orbital method 
using STO-3G, STO-6G, MIDI4 and MIDI4* basis 
sets. The N-O bonding peak, which was observed in 
the experimental deformation density of LiNO2.H20, 
could be reproduced only by using the MIDI4* basis 
set. This indicates the importance of polarization 
functions in the study of charge distribution. 

Introduction 

The N-O bonding electrons of the NO2 ion have 
been observed in the experimental deformation 
density of K2Na[Co(NO2)6] (Ohba, Toriumi, Sato & 
Saito, 1978), [Ni(NHa)4(NO2)2] (Figgis, Reynolds & 
Wright, 1983) and LiNOE.H20 (Ohba, Kikkawa & 
Saito, 1985), whereas molecular-orbital calculations 
using a minimal basis set did not reproduce the N-O 
bonding peaks (Ohba, Kitaura, Morokuma & Saito, 
1979). The discrepancy seemed to be due to the inac- 
curacy of the theoretical calculations. The flexibility 
of the basis set affects the deformation density sig- 
nificantly (Feil, 1985). Thus, the basis-set dependence 
of the deformation density in NO2 has been examined 
to resolve this problem. 

Theoretical calculations 

The N-O bond length and the O-N-O bond angle 
were set to 1.252 A and 114-7 °, which are the mean 
values of neutron studies on NaNO2 (Kay & Frazer, 
1961), Ba(NO2)2.H20 (Kvick, Liminga & Abrahams, 
1982) and Sr(NO2)2.H20 (Lundgren, Kvick, Liminga 
& Abrahams, 1985) at room temperature. Single- 
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determinant closed-shell ab initio SCF calculations 
were performed with the program system MOLYX 
(Kamata & Iwata, 1987) on the VAX 11/750 com- 
puter of this department, using STO-3G, STO-6G, 
MIDI4 and MIDI4* basis sets. The MIDI4 basis set 
consists of three s- and two p-type contracted 
Gaussian functions for first-row atoms and two s-type 
functions for hydrogen. For the MIDI4* basis set, 
one group of d-type polarization function was added 
for first-row atoms and one group of p-type function 
for hydrogen (Tatewaki & Huzinaga, 1980). The 
basis-set dependence was also examined for related 
ions and molecules for comparison: NO;  with the 
N-O bond length 1.25 A from the neutron study of 
LiNOa.3H20 (Hermansson, Thomas & Olovsson, 
1980); HCOO- with the C-O and C-H bond lengths 
1.25 and 1.09 A respectively and the O-C-O bond 
angle 125.5 ° from the neutron studies of 
LiHCOO.H20 (Tellgren, Ramanujam & Liminga, 
1974) and NaHCOO (Fuess, Bats, Dann6hl, Meyer 
& Schweig, 1982); C2H6 in the staggered conforma- 
tion with the C-C and C-H bond lengths 1.541 and 
1-091 A respectively; and HNO2 assuming that the 
geometry of the N O  2 group is the same as that of 
NO2 with the N-H bond length 1.06 A. 

Discussion 

The deformation density on the NO2 plane is shown 
in Fig. 1. The minimal basis sets, STO-3G and STO- 
6G, give almost the same features and do not present 
the N-O bonding peak observed experimentally. The 
double-~" basis set, MIDI4, also does not produce the 
N-O bonding peak. The same situation holds for the 
4-31G basis set (Ritchie, 1985). The MIDI4* basis 
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