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Abstract

(Sn,_,Tb,)Tb,RheSn,3 and (Sn,_,Dy,)Dy,OsS5n4
belong to a large stannide series where there exist
two chemical formulae: SnM;MSn,, (phase I and
I'’) and SnM,M{Sn,; (phase Il and II'), and four
structures: I, I, Il and II'. That of phase II' appeared
to be cubic (a =137 A and space group Fm3m) while
the structure of phase II is tetragonal (a =13-7, c=
27-4 A and space group I4,/acd). Phase II' of the
M =Tb, M'=Rh stannide was found to be a dis-
ordered microtwinned phase II. The disorder con-
cerned the Tb(2) and Sn(2) sublattices of formula:
[Sn(1),_,Tb,]Tb(2),RheSn(2),5n(3),,5n(4),.  This
qualitative model is based on the observation of weak
intermittent diffuse streaks and on refinements of the
average cubic structure, carried out by taking into
account only Bragg reflections. The results proved
that phases II and II' had related structures and the
same chemical formulae. The complete reciprocal
lattice (Bragg +diffuse scattering) was obtained by
electron diffraction for the M =Dy, M'=0s stan-
nide. The diffuse streaks are lines parallel to the {100}
cubic (a; X a; X ap) directions and going through
the F-centering-forbidden nodes. The three sets of
lines are related by the cubic threefold [111];,- axis.
It is observed that phase II structure contains eight-
atom [4Sn(2), 4M(2)] blocks which can have two
orientations (here called A and B). It can be surmised
that the same blocks exist in phase II’, but in a
partially disordered arrangement. Two equivalent
descriptions of this arrangement are given: (1)
ordered (100) planes of A and B blocks are stacked
at random and the threefold-axis-twinned individuals
give rise to three sets of streaks; (2) the A and B
blocks form an f.c.c. lattice which is comprised of
tetrahedra formed of nearest neighbours; it is shown
that when each cluster contains two A and two B
blocks, diffuse scattering condenses into the observed
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streaks. Crystal data for (Sn,_,Tb,)TbsRheSn;5, x =
1: M, =3548-5, disordered microtwinned tetragonal,
14,/acd, a=13-772(2) A, c=2a, V=52242A° Z =
8, D,=9-02gcm™® AgKa, graphite mono-
chromator, w=175-9cm™', F(000)=11960, T=
ambient.

Introduction

The (Sn,_,Tb,)Tb,Rh¢Sn,g and (Sn,_,Dy,)Dy,Os,-
Sn,3 compounds belong to a large series of inter-
metallic stannides with formulae SnM,M/Sn,, or
(Sn,_ M )YM,M(Sng, with M =RE (rare earth), Y,
Sc, Ca, Sr, Th and M'=Rh, Ru, Ir, Os, Co. These
stannides exhibit magnetic and/or superconducting
properties; for example, reentrant superconductivity
(T.=1, T,, =0-5 K) was found in the compound with
M =Er and M’'=Rh (Remeika et al, 1980). Four
different phases have been reported in this system,
namely I, I') IT and Il', whose structures may be
described by means of three-dimensional networks
of corner-sharing M'Sn, trigonal prisms. The way the
prisms are joined together leads either to phase I
and I’ compounds with the chemical formula
SnM;M/.Sn,, or to phase II and II' compounds with
the chemical formula (Sn,_ M, )M ,M(Sn,s. In some
previous publications phase 11' was called phase I11.
Phase I is cubic (space group Pm3n, a,=9-7 A). In
this structure the corner-sharing trigonal-prism
network generates icosahedral and cuboctahedral
sites occupied by the Sn(1) and M atoms. These latter
atoms form a sublattice having the arrangement of
an A1lS5 structure (Vandenberg, 1980; Hodeau,
Chenavas, Marezio & Remeika, 1980). Phase I’ com-
pounds have a slightly distorted phase I structure; its
symmetry is either cubic with a; = 2a; or tetragonal
with a;y=2a22"? and c.=a, (Hodeau, Marezio,
Remeika & Chen, 1982; Miraglia, Hodeau,
Marezio, Laviron, Ghedira & Espinosa, 1986). Phase
IT1 is tetragonal (space group I4,/acd, a;;=13-7,
cn=2a;). Its chemical formula corresponds
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Depending on the type of polyhedron, different
diffuse intensity distributions have been obtained.

For a partially disordered structure, having a local
order in some regions of the crystal, the scattering-
power density is given by the sum of a periodical
contribution P(r) and of a disordered contribution
D(r). The average value of the latter contribution
over the whole crystal is zero. In the perfect-local-
order model for a given cluster we have: ¥, D(r;+
r;) =0, Vr;. Each i atom forming the clusters is defined
by a vector r; whose origin is related to the cluster,
and each cluster is defined by a vector r;. It follows
that the average of the D(r) function be zero for a
cluster as well as for the entire crystal.

If the distribution of the atom sites in the cluster
is described by an w(r) function (set of Dirac peaks),
we have: [ w(r)D(r+r;) dr=0, Vr,. The Fourier trans-
form of this convolution product is given by
Q(g)Fp(g)=0, Vg, where 2(g)=FT[w(r)] and
Fp(g) =FT[ D(r)]. The diffuse amplitude F;(g) of
the disordered contribution is zero when £2(g)#0
and it may have a value different from zero on the
surface defined by £2(g) = 0. Thus, the diffuse ampli-
tude is not distributed randomly. One can determine
the diffusion surface from the w(r) function, that is
from the cluster shape. If the cluster is centrosym-
metrical (octahedron, cube etc.) the Fourier transform
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Fig. 8. The M(2),Sn(2), sublattice in the ordered phase II. The
stars, represented only for two tetrahedra, and the open circles
refer to Sn(2) and M(2) atoms, respectively. Note the two
possible orientations for the M(2), tetrahedra.

{2(g) is real and the diffuse scattering is localized on
a surface. If the cluster is not centrosymmetrical
(tetrahedron, pyramid etc.), the Fourier transform is
complex [{2(g)= R(g)+il(g)=0] and the diffuse
scattering is localized on a curve at the intersection
of R(g)=0and I(g)=0.

As stated above and shown in Fig. 8 the inter-
penetrated [ M(2),Sn(2),] tetrahedra form a cubic
lattice of A and B blocks; each block represents one
of the two possible orientations of the interpenetrated
tetrahedra. The nodes of such a lattice form an f.c.c.
Bravais lattice which contains tetrahedra formed by
two A and two B blocks, as shown in Fig. 9. Let us
suppose that each 2A—2B tetrahedron is a cluster
which has the same composition as the crystal, and
whose i sites are represented by the vectors: r, =
1111, r,=3111], r;=4[111], and r,=4[111]. The
vector origin is at the tetrahedron center and the uait

Fig. 9. The lattice of the A,B blocks in the ordered phase II. A
2A-2B tetrahedral cluster having the composition of the bulk
crystal is outlined.

Fig. 10. Schematic representation of the stacking of uncorrelated
planes along the a, b and ¢ axes for various domains of phase
II' compounds.
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cell is that of the crystal, a;,~13-8 A. The Fourier
transform gives:

2(g)=0=Y o(r) exp 2mig.r)
=expr[i1r/2(h+ k+ ) +exp[im/2(—h—k+1)]
+explim/2(h—k—1)]
+exp[im/2(-h+k—-1)]
=cos hm/2 cos km/2 cos lmw/2
+isin hmw/2sin km/2sin lw/2=0.

Its solutions h=2m+1, k=2n; h=2m, k=2n+1,
h=2m+1, I=2p; h=2m, 1=2p+1; k=2n, I=
2p+1; and k=2n+1, I =2p indicate that the diffuse
scattering is located on streaks as shown in Fig. 7(a),
which represents the reciprocal lattice of M =Dy,

'= Qs stannide. It is easy to surmise that the disor-
der in this compound consists in the substitution of
A with B blocks. Perfect local order exists if the
substitution occurs in such a way that each tetrahedral
cluster is comprised of four blocks, two of each type.

This model is compatible with that based on uncor-
related planes of blocks described above. In order to
define a 2A-2B tetrahedron one has always to take
into consideration two planes. Whichever stacking of

Fig. 11. Possible arrangement of the twin domains in phase 11'.
At the domain walls two tetrahedral clusters which do not have
the bulk composition are outlined.
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Fig. 12. Reciprocal lattice for: (a) ordered untwinned phase 1I;
(b) ordered twinned phase I1; (¢) slightly disordered phase 11';
(d) disordered microtwinned phase II' with perfect local order.

planes exists in the A, B lattice, any two first-neighbor
A,B blocks in a given plane can always be associated
with two first-neighbor A, B blocks of the plane above
or below, to form a 2A-2B tetrahedron. The reversed
reasoning also holds. It follows, in fact, from the
above discussion that if an f.c.c. lattice is built up of
2A-2B tetrahedra, it contains a stacking of ordered
(A,B) planes. A direct geometrical proof was given
by Danielian (1964). As shown in Fig. 11, at the
domain walls the cluster composition is not that of
the crystal. It has been shown theoretically (de
Ridder, Van Tendeloo, Van Dyck & Amelinckx, 1976;
de Ridder, Van Dyck, Van Tendeloo & Amelinckx,
1977) that in such a case a broadening of the diffuse
pattern would be obtained. We indeed observed that
the diffuse streaks of the M = Dy, M'= Qs stannide
were qualitatively broadened. It should be pointed
out that no diffuse streak was observed in the zero
layer of the [001] reciprocal plane (Fig. 6a). Since A
and B blocks may not be differentiated by projections
along the [001],{100], and [010] directions, no diffuse
scattering is to be expected in the zero layer of the
reciprocal planes [001], [100], and [010].

In the case of the M =Tb, M’'=Rh stannide we
observed intermittent rather than continuous streaks.
This is due to the different level of disorder existing
in the two compounds. From the dimensions of the
intermittent streaks it is estimated that the domains
in the M =Tb, M’ =Rh stannide have a correlation
length of ~50 A in one direction and ~200 A in the
other two. The first value which is of the same order
of magnitude as the cell parameters corroborates
qualitatively the model based on perfect local order.

Fig. 12 shows how one goes from the reciprocal
lattice of ordered and untwinned phase II to that of
disordered microtwinned phase II'. It is worth men-
tioning that experimentally we have observed
reciprocal lattices such as Figs. 12(b), (¢) and (d),
but never that corresponding to an untwinned
phase 1.
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Abstract

Electron-density distribution of a nitrite ion was
calculated by the ab initio molecular-orbital method
using STO-3G, STO-6G, MIDI4 and MIDI4* basis
sets. The N-O bonding peak, which was observed in
the experimental deformation density of LiNO,.H,0,
could be reproduced only by using the MIDI4* basis
set. This indicates the importance of polarization
functions in the study of charge distribution.

Introduction

The N-O bonding electrons of the NO; ion have
been observed in the experimental deformation
density of K,Na[Co(NO,)] (Ohba, Toriumi, Sato &
Saito, 1978), [Ni(NH;),(NO,),] (Figgis, Reynolds &
Wright, 1983) and LiNO,.H,O (Ohba, Kikkawa &
Saito, 1985), whereas molecular-orbital calculations
using a minimal basis set did not reproduce the N-O
bonding peaks (Ohba, Kitaura, Morokuma & Saito,
1979). The discrepancy seemed to be due to the inac-
curacy of the theoretical calculations. The flexibility
of the basis set affects the deformation density sig-
nificantly (Feil, 1985). Thus, the basis-set dependence
of the deformation density in NO3 has been examined
to resolve this problem.

Theoretical calculations

The N-O bond length and the O-N-O bond angle
were set to 1-252 A and 114-7°, which are the mean
values of neutron studies on NaNO, (Kay & Frazer,
1961), Ba(NO,),.H,0 (Kvick, Liminga & Abrahams,
1982) and Sr(NO,),.H,0O (Lundgren, Kvick, Liminga
& Abrahams, 1985) at room temperature. Single-
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determinant closed-shell ab initio SCF calculations
were performed with the program system MOLYX
(Kamata & Iwata, 1987) on the VAX 11/750 com-
puter of this department, using STO-3G, STO-6G,
MIDI4 and MIDI4* basis sets. The MIDI4 basis set
consists of three s- and two p-type contracted
Gaussian functions for first-row atoms and two s-type
functions for hydrogen. For the MIDI4* basis set,
one group of d-type polarization function was added
for first-row atoms and one group of p-type function
for hydrogen (Tatewaki & Huzinaga, 1980). The
basis-set dependence was also examined for related
ions and molecules for comparison: NO; with the
N-O bond length 1-25 A from the neutron study of
LiNO;.3H,O (Hermansson, Thomas & Olovsson,
1980); HCOO™ with the C—O and C-H bond lengths
1-25 and 1-09 A respectively and the O-C-O bond
angle 125-5° from the neutron studies of
LiHCOO.H,O (Tellgren, Ramanujam & Liminga,
1974) and NaHCOO (Fuess, Bats, Dannohl, Meyer
& Schweig, 1982); C,H, in the staggered conforma-
tion with the C-C and C-H bond lengths 1-541 and
1-091 A respectively; and HNO, assuming that the
geometry of the NO, group is the same as that of
NO; with the N-H bond length 1-06 A.

Discussion

The deformation density on the NO, plane is shown
in Fig. 1. The minimal basis sets, STO-3G and STO-
6G, give almost the same features and do not present
the N-O bonding peak observed experimentally. The
double-¢ basis set, MIDI4, also does not produce the
N-O bonding peak. The same situation holds for the
4-31G basis set (Ritchie, 1985). The MIDI4* basis
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